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The paper presents a method that removes the effects of all irregular frequencies in 
boundary-integral equations governing the interaction of regular waves with floating 
bodies of general geometry. A modified integral equation is obtained by the linear 
superposition of the classical Green equation and its normal derivative with respect 
to the field point. The selection of a purely imaginary constant of proportionality 
ensures the removal of all irregular frequencies in the continuous problem and the 
appropriate selection of its magnitude eliminates their undesirable effects in its 
numerical implementation. Computations are presented of the added-mass and 
damping coefficients and exciting forces on a sphere and a truncated vertical 
cylinder, illustrating the effectiveness of the method. 

1. Introduction 
‘ Irregular ’ frequencies arise in boundary-integral formulations of wave problems, 

notably exterior problems in acoustics and surface-wave-body interactions. At the 
irregular frequencies the integral equations either possess no solutions, or if solutions 
exist they are not unique. The discrete approximation of these equations generates 
ill-conditioned linear systems for the unknown function on the body boundary and 
leads to appreciable errors. The existence of irregular frequencies is tied to the 
selection of the specific boundary-integral equation and in no way reflects an 
irregularity in the solution of the original boundary-value problem, which under mild 
restrictions on the body geometry accepts a unique solution a t  all frequencies. 

The occurrence of irregular frequencies in boundary-integral equations arising in 
wave interactions with surface-piercing bodies is pointed out by John (1950). Their 
detrimental effects in applications did not become evident until the late sixties, when 
Frank (1967) developed a two-dimensional panel method for the prediction of the 
added-mass and damping coefficients of ship sections. Frank used the ‘source 
distribution ’ method which leads to the solution of a Fredholm integral equation of 
the second kind for the source strength over the body boundary. His numerical 
results displayed a substantial error in the predictions of the added-mass and 
damping coefficients near the irregular frequencies. Subsequent numerical studies 
confirmed the presence of the irregular-frequency error in two- and three-dimensional 
problems, both in connection with the source distribution and the ‘Green ’ methods. 
The latter is based on the application of Green’s theorem which leads to the solution 
of a Fredholm integral equation of the second kind for the velocity potential on the 
body boundary. 

The kernel in the Green integral equation is the transpose of the kernel in the 
source-distribution method. The irregular frequencies of the two equations are the 
same because they coincide with the zeros of their common Fredholm determinant. 
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They can be shown to coincide with the eigenfrequencies of the interior Dirichlet 
problem (Ohmatsu 1975), thus forming an infinite discrete set. I n  the vicinity of the 
irregular frequencies the properties of the source strength and velocity potential are 
quite different. The source-distribution integral equation has no solution ‘at  ’ the 
irregular frequencies, and the source strength can be shown to possess a principal- 
value singularity in their vicinity. This singular behaviour is not present in the 
velocity potential defined either as a distribution of wave sources over the body 
boundary or obtained from the solution of the Green integral equation. Unlike its 
source-distribution counterpart the Green equation can be shown to possess a non- 
unique solution a t  the irregular frequencies, by virtue of Fredholm’s third theorem. 
Adachi & Ohmatsu (1979) show that its right-hand side is orthogonal to the 
eigensolutions of its transpose, the source-distribution equation. 

In spite of the non-singular behaviour of the velocity potential near the irregular 
frequencies, the condition number of both the source distribution and the Green 
equation is large in their vicinity. Discretization errors in their numerical solution by 
panel methods translate into large errors in the solution over a substantial frequency 
band around the irregular frequencies. The width of this ‘polluted’ frequency band 
can be reduced by increasing the number of panels. In practice this treatment is 
unacceptable because it entails a substantial increase in the computational effort. 
Ohmatsu (1975) suggested the addition of a rigid lid on the body waterplane area. I ts  
presence eliminates the ‘resonance ’ associated with the interior Dirichlet eigen- 
problem and therefore eliminates the effects of the irregular frequencies. This 
method is effective with both the source and the Green methods in two and three 
dimensions, a t  the cost of using additional panels on the body waterplane area. 
Ogilvie & Shin (1978) removed the first irregular frequency in two dimensions by 
placing a point wave source on the interior free surface acting as an absorber of the 
energy of the corresponding resonant Dirichlet eigensolution. Ursell (1981) showed 
that the use of a sequence of singularities is necessary for the removal of more than 
the first irregular frequency from the integral equation. Sayer (1980) extended this 
technique in water of finite depth and Wu & Price (1987) for the case of twin bodies. 

Partly as a result of the inherent presence of irregular frequencies in boundary- 
integral equations based on the wave Green function, a new class of hybrid methods 
of solution surfaced. Yeung (1973) utilized an integral representation of the flow near 
the body, based on the Rankine source 1/r and a distribution of panels over the body 
boundary, free surface and a matching boundary. In the domain exterior to this 
boundary a series representation was used. In  water of infinite depth in two 
dimensions this technique was further developed by Nestegard & Sclavounos (1984). 
A proof that this formulation is free of irregular frequencies was given by Angell, 
Hsiao & Kleinman (1983). An alternative hybrid method based on a finite-element 
representation of the flow in the interior domain was studied by Bai & Yeung (1974). 
In  three dimensions this method is reviewed by Mei (1978). Of different flavour is the 
approach by Martin (1981) in two and three dimensions, based on the null-field 
equation method and exercised for bodies of mathematical shape. In all these 
methods irregular-frequency effects were found not to occur. 

In related work in acoustic radiation and scattering, Leis (1965), Brakhage & 
Werner (1965), and Panich (1965) independently proposed the removal of the 
irregular frequencies in the source-distribution method by supplementing the single- 
layer potential by a distribution of normal dipoles with moment proportional to the 
source strength. By selecting the coupling constant to be complex they generated a 
modified integral equation free of irregular frequencies. In  an acoustic scattering 



Removing irregular frequencies from integral equations 395 

problem, Burton & Miller (1971) obtained a similar equation by the linear 
superposition of the Green integral equation and its normal derivative with respect 
to the field point. The analytical properties of these modified equations in acoustics 
are studied by Colton & Kress (1983) and in surface-wave body interactions by 
Kleinman (1982). A variational form of this modified integral formulation, coupled 
to a finite-element layer surrounding the body boundary, was studied by Euvrard 
et al. (1981) for the computation of the interaction of' surface waves with floating 
bodies. 

It is the objective of the present study to demonstrate the effectiveness of this 
modified integral formulation in removing the irregular frequency effects in surface- 
wave-body interactions, applied directly over the body boundary and requiring no 
prior regularization of the integral operator. In  both the radiation and diffraction 
problems, the linear superposition of the Green equation and its normal derivative 
is solved for the respective potentials. Their numerical solution is implemented in a 
radiation/diffraction panel code and all irregular frequencies are removed. The 
increase in the computational effort is not substantial relative to the effort required 
for the solution of the Green equation. The implementation of the present method 
utilizes the same number of panels and unknowns as in the Green equation and 
requires the evaluation of the second derivatives of the wave source potential. In 
deep water they can be related to lower-order derivatives by recurrence relations, 
and in finite depth they can be obtained a t  a small additional computational cost. 

The Green equation for the velocity potential is Fredholm of the second kind, while 
its normal derivative is a principal-value type equation of the first kind with poor 
conditioning. The singularity in the kernel of the latter equation is similar to that in 
the lifting-surface equation for the distribution of vorticity in thin-wing theory. Each 
equation independently solves the radiation and diffraction boundary-value 
problems, therefore their linear combination does as well. The irregular frequencies 
of the Green equation coincide with the eigenfrequencies of the interior Dirichlet 
problem, and those of its normal derivative with the eigenfrequencies of the interior 
Neumann problem. Their linear combination has irregular frequencies, unless the 
coupling constant is complex. Numerical experiments suggested that a positive 
purely imaginary coupling constant generates the best results. The proper selection 
of its magnitude is essential for the successful numerical implementation of the 
method. It is shown that an optimal value exists, and is determined by minimizing 
the condition number of the modified integral equation a t  the first irregular 
frequency of the Green equation. Similar studies have been conducted in acoustic 
and electromagnetic scattering by Kress (1983) and for an exterior Stokes flow by 
Hsiao & Kress (1985). 

The performance of the method is illustrated by the computation of the added- 
mass and damping coefficients and exciting forces on a sphere and a truncated 
vertical cylinder. The errors in the vicinity of all Dirichlet and Neumann irregular 
frequencies are removed, leaving the quality of the numerical predictions away from 
their location unaffected. 

2. Formulation 
Regular plane progressive waves interact with a floating body which undergoes 

small-amplitude oscillations around a stationary position. The flow is assumed to be 
irrotational, and the free-surface and body-boundary conditions are linearized. A 
time-harmonic dependence applies throughout, permitting the use of complex 
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velocity potentials to describe the incident, radiation and diffraction wave 
disturbances. The real part of the product of all complex quantities with the factor 
eiWt is understood hereafter. Because of the association of irregular frequencies with 
the interior Dirichlet problem, their effects in water of finite or infinite depth are the 
same. Therefore, only the last case is studied here. The incident wave potential is 

igA 
O w  

defined by 
- evz-iux cosp-ivy s in6 , 

where A is the wave amplitude, w its frequency, v = w2/g and p the propagation angle 
of the incident waves relative to the positive x-axis. The Cartesian coordinate system 
(x,y,z), illustrated in figure 1, is fixed relative to  the z = 0 plane. 

Linearity allows the decomposition of the body-generated wave disturbance into 
the radiation component vR and the diffraction component v7, with 

where 5, j = 1 ,  . .., 6 are the complex amplitudes of the oscillatory body displace- 
ment in its six rigid-body degrees of freedom. The complex velocity potentials 
v,, j = 1, ..., 7 satisfy the Laplace equation in the fluid domain, are subject to the 
free -surface condition 

(2.3) qIjz - vvj = 0 

on the z = 0 plane, the Sommerfeld radiation condition a t  infinity, and on the body 
boundary they satisfy the conditions 

tp. m =ni ,  j = 1 ,  ..., 6, (2.4) 

V 7 n  = - Y o n ,  (2 .5)  

where nl, i = 1,2 ,3  are the Cartesian components of a unit vector, normal to the body 
surface and pointing out of the fluid domain, and (n4, n5, n,) = (x, y, z )  x (nl, n2, n3). 

The radiation and diffraction velocity potentials will be determined by applying 
Green’s theorem, utilizing as the Green function the wave source potential 

r2 = (x-()2+(y-n)2+(z-[)2 (2.7) 

due to a point source located a t  the point (c,v,[), which satisfies the Laplace 
equation and free-surface conditions. The contour integral over the positive k-axis is 
indented over the pole in order to  ensure the satisfaction of the Sommerfeld radiation 
condition. The derivation of (2.6) is detailed in Wehausen & Laitone (1960). For the 
radiation potentials v,, Green’s theorem yields the following Fredholm integral 
equation over the body boundary : 

It is hereafter understood that the x,( variables appearing in (2.8) and all ensuing 
integral equations denote vectorial positions. An integral equation similar to (2.8) 
can be obtained for the diffraction velocity potential p7 by replacing ni by - i3po/i3n 
in the right-hand side of (2.8). An alternative, and somewhat more attractive, 
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FIQURE 1 .  The Cartesian coordinate system. 

integral equation exists for the sum of the incident and diffraction potentials cpD. 
It is 

I ts  derivation parallels that in analogous aerodynamic flows where the incident flow 
is potential flow (Moran 1984). Other than the pointwise distribution of the radiation 
and diffraction velocity potentials, of interest in applications are the added-mass and 
damping coefficients, aij and b, respectively. They are related to the real and 
imaginary parts of the complex impedance force or moment in the i th direction due 
to  the forced oscillation of the body in the j th  direction. They are defined as follows 

aij - (i /w) b, = p nivj ds. [ISb (2.10) 

The corresponding wave-exciting forces and moments in the ith direction are 
obtained from the solution of the diffraction problem, and are defined by the 
expression 

(2.11) X i  = - iwp I/3byo ni ds. 

Section 3 shows that (2.8) and (2.9) possess non-unique solutions at the eigen- 
frequencies of the interior Dirichlet problem, and presents the method that removes 
them. Computations of the added-mass and damping coefficients and exciting 
force are presented in $4. 

3. Irregular frequencies and their removal 
This section reviews aspects of the theory on the occurrence of the irregular 

frequencies in the classical Green integral equation and their removal in its modified 
form. 

The integral equations (2.8) and (2.9) differ only in their right-hand sides. 
Therefore, should homogeneous solutions exist, they are common and occur a t  the 
same frequencies. Denote by 
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the velocity potential $(x)  a t  the field point x inside the body, due to a distribution 
of normal dipoles on the body boundary with moment equal to rp(5). As the field point 
x approaches the interior of the body boundary, the velocity potential I+4 takes the 

If $(x) = 0 on the interior of the body boundary, the existence of homogeneous 
solutions to (2.8) and (2.9) is equivalent to the existence of a non-trivial 'dipole 
moment' ~ ( 5 )  defining, via (3.1)' a non-vanishing velocity potential $ inside the 
body. A non-trivial velocity potential $ in the body interior, subject to $ = 0 on its 
interior boundary and the free-surface condition (2.3) on z = 0, exists a t  the 
eigenfrequencies of the interior Dirichlet problem. They form an infinite discrete set, 
and are hereafter named Dirichlet frequencies. 

The integral equations (2.8) and (2.9) are not the only possible equations solving 
the radiation and diffraction problems. Since properties of the interior domain define 
the existence and the location of the irregular frequency, we may reason backwards 
in search of an integral equation free of homogeneous solutions. What interior 
boundary condition for the velocity potential $ leads to trivial interior solutions a t  
all frequencies? Burton & Miller (1971) suggest a linear combination of the Dirichlet 
and Neumann boundary conditions which leads to an interior eigenproblem accepting 
trivial solutions at all frequencies. Let $ be subject to 

$+a- a$ = 0 
an (3.3) 

on the interior boundary, where a is a complex constant. Combining (3.1) and (3.3), 
the dipole moment rp(5) is subject to 

The homogeneous equation (3.4) accepts only the trivial solution if the imaginary 
part of a is non-zero. Following Kleinman (1982)' we apply Green's theorem to $ and 
its complex conjugate $*, use the free surface and the interior condition (3.3) to 
obtain 

Taking the imaginary part of both sides of (3.5), we conclude that for a non- 
vanishing imaginary part of the complex constant a, a$pn = 0 on the interior 
boundary. Combining this condition with (3.3) i t  follows that $ = 0 as well. Interior 
eigensolutions subject to the former condition occur at the Neumann frequencies and 
those subject to the latter occur a t  the Dirichlet frequencies. Frequencies from one 
set may coalesce with frequencies from the other for certain body geometries. This 
is illustrated later in the section for a truncated vertical cylinder. The existence, 
however, of non-trivial interior eigensolutions subject simultaneously to the 
homogeneous Dirichlet and Neumann conditions on the interior boundary demands 
the coalescence of the corresponding mode shapes as well, which is not the case. This 
follows from Green's representation theorem which ensures that I+4 = 0 in the interior 
domain when both $ = 0 and a$-/an = 0 hold on its boundary. Therefore, the 
coalescence of the Dirichlet and Neumann frequencies is expected not to be 
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responsible for any ill-conditioning in the matrix equation or generate a substantial 
error of the numerical solution in their vicinity. Supporting numerical evidence is 
presented in the next section. 

The coalescence of Dirichlet and Neumann frequencies is next shown for a 
truncated vertical circular cylinder with draught T and radius R. Eigensolutions of 
the interior Dirichlet problem take the form 

= sinhk(r+T){ cos m0 } J , ( k r ) ,  
sin mB 

where J,(x) are the Bessel functions of order m. The wavenumber k is determined 
from the Dirichlet condition on T = R, 

Jm(ksR) = 0, s = 1, ... . (3.7) 

The Dirichlet frequencies corresponding to the modes defined by (3.6) and (3.7) are 
determined by enforcing the free-surface condition (2.3), and in non-dimensional 
form are defined by the relationship 

The corresponding eigensolutions of the interior Neumann problem are 

{ @ v n )  = coshk(i+T){ cos n0 }J , (kr) ,  
$Z, n sin n0 (3.9) 

Jn(ksR) = 0, s = 1 ,  ..., (3.10) 

= kn3,Rtanhkn,,R 4 , s R  
v:, R = 9 (3.11) 

Denote the roots of Jn(z) .  by j n , . s , ~  = 1, ... and of J',(x) by jh,,s,s = 1, ... . Thc 
coalescence of Dirichlet and Neumann frequencies is equivalent to the equality of the 
two functions of the parameter S = T/R : 

jm, ~ 0 t h  j m p  6 = j a ,  t tanhjg, t 8, (3.12) 

where j,, ,,j:, are fixed roots of Bessel functions. The function on the left-hand side 
is monotonically decreasing, with an asymptotic behaviour 1/6 as 6+ 0 and tending 
to jm,s as 6 tends to infinity. The function on the right-hand side is monotonically 
increasing from zero to jL,t as 6 tends to infinity. Therefore, values of S that solve 
(3.12) exist if the following inequality is satisfied: 

j m ,  s < A, t '  (3.13) 

Three solutions of (3.12) subject to (3.13) are, for example, 6 = 0.367, YR = 3.398 for 
m = n = O ,  s = l ,  t = 2 ,  and S=O.527 ,  vR=2.82 for s = t = l ,  m = 0 ,  n = 2  and 
6 = 0.455, VR = 5.23 for s = t = 1,  m = 0, n = 4. I t  is clear from this analysis that 
the coalescence of Dirichlet and Neumann frequencies is not accompanied by 
the equality of their corresponding eigenmodes. 

The right-hand sides for the radiation and diffraction problems, corresponding to 
(3.4), are obtained as follows. Using Green's identity, the radiation potentials in the 
fluid domain are defined by 

(3.14) 
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The normal derivative of (3.14) is evaluated by taking the inner product of its 
gradient with respect to the field point x with the normal vector n. The result is 

which is an integral equation of the first kind for the velocity potential qj. Compared 
to (2 .8 ) ,  i t  is less attractive for computation because of its poor conditioning and the 
need to interpret and evaluate carefully the double-normal derivative of the Green 
€unction. Its irregular frequencies coincide with the Neumann frequencies, as can be 
seen by comparing the left-hand side of (3.15) with the normal derivative of the right- 
hand side of (3.1). The linear combination of (2.8) and (3.15) leads to the desired 
modified equation for the radiation velocity potentials cp, : 

which is the same equation as that derived and studied by Kleinman (1982). For the 
sum of the incident and diffraction potentials, the corresponding equation takes the 
form 

= 4 n [ q + , ( x ) + a M ] .  an, (3.17) 

The homogeneous operator of both equations is identical to (3.4) which was shown 
to possess only the trivial solution, thus confirming that (3.16) and (3.17) are free of 
Dirichlet or Neumann irregular frequencies. 

Colton & Kress (1983) point out that  in the numerical procedure one can directly 
descretize (3.16) and (3.17) or use the regularized form obtained by a pre- 
multiplication of these equations by a frequency-independent operator. With this 
operation the unbounded operator involving the double normal derivative of the 
Green function (2.6) can be rendered bounded. This operation is equivalent to an 
integration by parts and i t  reduced the strength of the singularity in the double 
normal derivative. Burton & Miller (1971) suggest the same regularization process. 
The disadvantage of this process is tha.t it entails the set-up and premultiplication of 
the modified equation by a matrix. In the light of the substantial increase in the 
computational effort associated with such a process for a large number of panels, we 
attempted the direct numerical solution which is described in the next section. 

4. Numerical solution 
The numerical solution of (3.16) and (3.17) was carried out by a panel method. The 

body wetted surface is fitted with a large number of plane quadrilaterals, the velocity 
potential is assumed piecewise constant over their surface and the integral equation 
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is solved by collocation at  the panel centroids. These steps reduce the continuous 
equation (3.16) to  B matrix equation for the velocity potentials pi, 

where i = 1, . . . , N and xi are the vector coordinates of the centroid of the ith panel. 
Here the subscripts i , j  are panel rather than mode-of-motion indices, Sj denotes the 
area of the j t h  panel and N is the total number of panels. The discrete form of the 
diffraction integral equation (3.17) is similar to (4.1). 

If LY = 0, (4.1) reduces to the discrete form of the Green equation, the solution of 
which has been found to generate large errors in the vicinity of the irregular 
frequencies. In  connection with the panel code used in the present study, their 
detrimental effects are illustrated in two dimensions in Sclavounos & Lee (1985) and 
in three dimensions in Breit, Newman & Sclavounos (1985). 

The inclusion of the irregular-frequency correction in (4.1) for a P 0 requires the 
interpretation and evaluation of the double normal derivative of the Green function 
in the left-hand side. For i =+ j, this normal derivative is non-singular and the normal 
derivative with respect to the xi coordinate and the integration over S, can be 
interchanged. When i = j, it  follows that the double normal derivative of the Green 
function G in (4.1) is equal to the normal velocity induced a t  the centroid of thej th  
panel by a layer of normal dipoles of constant moment pi distributed over its surface. 
This normal velocity is known to exist (cf. Kellog 1929) and can be evaluated by 
interchanging the normal-derivative operation with the integration and interpreting 
the singularity in the resulting double normal derivative under the integral sign in 
the principal value sense. Moreover, it can be shown that this singularity is identical 
to that encountered in lifting-surface theory. 

Define a local Cartesian coordinate system centred at the centroid of the j t h  panel 
with the Cl axis normal to the plane of the panel and pointing in the direction of the 
normal vector n,  and the t l , r l  axes lying on the panel surface. Replacing the Green 
function G by its singular component 1/r = l / ~ x l - ~ l l ,  i t  follows that 

Invoking the Laplace equation and a known Green identity, we obtain 

(4.2) 

(4.3) 

where Cj is the contour of the j t h  quadrilateral and s is the unit outwards normal 
vector on this contour lying on the plane of the panel (figure 2 ) .  

Denoting by t the unit tangent vector on C,, and using the identity s = n x t it  
follows that 

r r 
D,=n.J  dZ[ txV6L( l / r ) ]  = - n *  

cj 
(4.4) 

which reduces Dj to an application of the Biot-Savart law, providing the normal 
velocity at the panel centroid xi induced by a vortex filament over the panel contour. 
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FIGURE 2 .  Definition sketch for the local coordinate system. 

Equation (4.41, derived here for i =j, forms the basis of the vortex-lattice method 
used for the solution of lifting-surface equations. It can be shown that (4.4) can be 
expressed in closed form in terms of elementary transcendental functions by 
combining the contributions from the four straight segments that C, consists of. A 
generalization of (4.4) for i +j follows similar steps. 

Summarizing, all elements in the matrix equation (4.1) have been evaluated by 
subtracting the singular component l / r  from G and integrating i t  analytically over 
the panels using the formulae of Hess & Smith (1966) and Newman (1986), including 
(4.4) for the terms involving the double normal derivative of 1 / ~ .  The regular part 
of G and its spatial derivatives were integrated using a single-node numerical 
quadrature centred at the panel centroid. For pairs of panels (i,j) sufficiently distant 
from each other, the analytical treatment of the Rankine singularity 1 / ~  is 
unnecessary. For these elements, the entire Green function and its spatial derivatives 
are integrated over the panels by the single-node quadrature formula. 

The selection of the panel centroids as the collocation points is essential for the 
proper numerical convergence of the present scheme. This is due to the presence of 
the double normal derivative in the first-kind component in the matrix equation 
(4.1), which is seen from (4.4) to generate infinite influence coefficients if the 
collocation point is allowed to approach the panel sides. A similar property is shared 
by vortex lattice methods where convergence is ensured by selecting the collocation 
point to lie a t  the panel centroid or in its near vicinity. In spite of such a selection, 
the numerical conditioning of the first-kind component in (4.1) is poor relative to its 
second-kind counterpart. It is the objective of the present study to show that by a 
proper selection of the coupling constant a the quality of the final results is not 
af€ected, while a t  the same time the irregular-frequency errors are removed. 

The selection of the ‘proper’ value for a: was carried out by minimizing the 
condition number K of the modified equation, or equivalently by maximizing its 
inverse A = 1 / ~  which will be the quantity considered hereafter. The mathematical 
library LINYACK was used to determine K .  It was found by numerical 
experimentation with alternative methods that the estimate provided by LINPACK 
is both an inexpensive and reliable indicator of the numerical conditioning of the 
associated matrix. The value of h depends on the wave frequency and the complex 
parameter a. The maximization of A over a wide range of frequencies is expensive and 
turns out to be unnecessary. It is more appropriate to study its behaviour in the 
vicinity of the Dirichlet or Neumann frequencies of the second- or first-kind 
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FIGURE 6. Heave added-mass and damping coefficients and modulus of the exciting force on the 
sphere near the first Dirichlet irregular frequency, as functions of vu. They are non-dimensionalized 
by a,  the displacement V, the water density p,  the frequency w ,  the acceleration due to gravity g 
and the incident-wave amplitude A : - - - -, p = 0; - - -, p = 0.02; -, p = 0.11. 

components of (4.1). The first Dirichlet frequency was selected to be the frequency 
at which the maximisation of h was carried out by varying a. Numerical evidence will 
be presented supporting the conclusion that this choice produces very good results 
near the other Dirichlet and Neumann frequencies and more generally over the entire 
frequency range of practical interest. 

The selection of the modulus and phase of a that maximizes h a t  the first Dirichlet 
frequency was carried out by studying the variation of h as a function of the modulus 
of a with phase set equal to  45", 90°, 135", 225", 270" and 315". The corresponding 
curves are illustrated in figures 3 and 4 for a sphere oscillating in heave and sway 
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FIGURE 7. Heave added-mass and damping coefficients and modulus of the exciting force on the 
sphere near the second Neumann irregular frequency, as functions of YU : - - - -, p = 0 ; -, 
p = 0.11; -.-, p = 00. 

respectively. These results produce two essential pieces of information regarding the 
optimal modulus and phase of a. It is evident that over most of la1 the choice of its 
phase being equal to 90" leads to larger values for A. More importantly, the largest 
value of h is attained for the same phase and for la] x 0.1, both for heave and sway. 
We may therefore conclude that for the sphere, the optimal value of the complex 
coupling parameter is a x O+O.li. It may be noticed that h tends to a small value 
a t  \a\ = 0, signifying that the numerical conditioning of the unmodified equation is 
poor a t  the first Dirichlet frequency, as expected. 

Recall that the determination of the optimal value for a was carried out at the first 
Dirichlet frequency. The determination of that frequency in practice for the sphere 
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and more general bodies will become clear shortly. The variation of h over a wide 
frequency range is shown in figure 5 for the sphere oscillating in heave. The remaining 
curves illustrate the variation of A for other 'non-optimal' values of p = la 1. The 
curve corresponding to /3 = co represents the result when only the first-kind 
component of (4.1) is accounted for. 

It is instructive here to make certain observations, noting that all values of 
correspond to il90" phase angle, or a = ip. For /3 = 0, i.e. for the Green equation, h 
vanishes at the first Dirichlet frequency. For p = co, i.e. for the first-kind equation, 
h vanishes a t  three frequencies which correspond to  the first three Neumann 
frequencies. For = 0.1 1, h attains a nearly constant value which persists even at 
higher frequencies. This value is smaller than the corresponding value for the Green 
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equation (p = 0) away from the Dirichlet frequencies, but i t  is substantially larger in 
their vicinity. In  terms of the conditioning of the modified equation, this translates 
into a somewhat poorer conditioning relative to the Green equation away from the 
Dirichlet frequencies but a substantially better conditioning near these frequencies. 
Moreover, the modified equation with the optimal /3 enjoys a substantially better 
conditioning relative to the first-kind equation (p  = co) both near and away from the 
Neumann frequencies. We may therefore conclude that introducing an optimal 11 YO 
of the first-kind component in the modified equation substantially improves the 
conditioning of the first-kind component alone over the entire frequency range and 
of the second-kind component alone (Green equation) near the Dirichlet frequencies, 
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while degrading somewhat the conditioning relative to the latter component away 
from these frequencies. 

Our conclusions so far have been based on the premise that 01 is optimized at  the 
first Dirichlet frequency. Numerical experimentation with the higher Dirichlet 
frequencies suggested similar if not somewhat inferior results. We did not attempt an 
optimization at the Neumann frequencies since the second-kind component is the 
dominant portion of the modified equation (4.1). Tests for the sphere and a truncated 
vertical cylinder suggested that /Iopt is the same for all modes of oscillation of the 
same body but different for the two bodies. Finally, the approximate location of the 
first and higher Dirichlet frequencies was determined from the minima of A for 
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equations (2.8) and (3.15), as functions of vR: ----, /3= 0 ;  -, p = 0.15; -.-, p =  a. 

the Green equation which locates their position with sufficient accuracy for the 
present analysis to be successful. 

Figures 6 and 7 illustrate the performance of the method in predicting the sphere 
heave hydrodynamic coefficients and exciting-force modulus near the first Dirichlet 
and the first non-zero Neumann frequency respectively. The corresponding results 
for a truncated circular cylinder (draught/radius = 0.5) in the sway mode are shown 
in figures 8 and 9. For the cylinder, Popt = 0.15. It may be observed in figure 7 that 
the performance of the first-kind equation (p  = co) is quite inferior relative to both 
the Green equation or the optimal modified equation. The small discrepancy between 
the last two equations for the heave damping coefficient is due to its very small value 
which renders it unimportant in practice. Where the value of the damping coefficient 
is large, this discrepancy disappears as can be seen in the sway damping coefficient 
for the cylinder (figure 9). 

Figures 6-9 illustrated the performance of the optimal modified equation in the 
vicinity of the first Dirichlet and second Neumann frequency for the heaving sphere 
and the first Dirichlet and first Neumann frequency for the swaying cylinder. A 
similar performance has been observed near the higher Dirichlet and Neumann 
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FIGURE 13. Heave added-mass and damping coefficients and modulus of the exciting force on 
the sphere, as functions of va: ----, p =  0 ;  -, ,8= 0.11; -.-, p =  co. 

frequencies, which typically lie a t  the border or outside the range of frequencies of 
interest in practice. The performance of the method near the second heave Dirichlet 
frequency of the sphere is illustrated in figure 10. The small discrepancy between the 
Green equation and the optimal modified equation for the damping coefficient away 
from that frequency is again because the evaluated quantity is very small. A similar 
performance has been observed near the higher Neumann frequencies. In  all cases 
illustrated so far the entire surface of the sphere has been approximated with 256 
panels and of the cylinder with 288 panels. 

It was shown in $3  that  for the truncated vertical cylinder the Dirichlet and 
Neumann frequencies may coalesce for specific values of the draught/radius 
parameter 6. For example, for 6 =  0.367 their coalescence occurs a t  the non- 
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dimensional wavenumber VR = 3.398. The approximation of the surface of a 
cylinder with 288 panels for this value of S revealed that the zeros of h for the first- 
and second-kind equations separately did not exactly coalesce. This is due to a 
'numerical shift ' of the corresponding frequencies caused by the approximation of 
the surface of the cylinder with a finite number of panels. Numerical experimentation 
with N = 288 panels led to a coalescence of the zeros of the corresponding h values 
for 6 = 0.352 a t  VR = 3.5. This is illustrated in figure 11 which shows the variation of 
h for the Green equation (/? = 0 ) ,  the first-kind equation (/3 = m) and the modified 
equation with = 0.15. The non-vanishing value of h for the modified equation 
confirms the absence of ill-conditioning, shown analytically in 3. The performance 
of the three equations in predicting the heave added-mass coefficient is illustrated in 
figure 12. 

I1 FLM 207 
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All results presented so far studied the performance of the second-kind, first-kind 
and modified equations near the Dirichlet and Neumann frequencies. Their 
performance over a wide frequency range for the heaving sphere and the swaying 
cylinder is illustrated in figures 13 and 14 respectively. The following observations 
can be made : (i) as expected, the spiky error in the first-kind equation occurs a t  the 
Neumann frequencies and in the second-kind equation a t  the Dirichlet frequencies ; 
(ii) away from the Neumann frequencies, the performance of the first-kind equation 
is poor in comparison to the second-kind and the modified equations due to its 
substantially poorer conditioning ; (iii) the agreement between the second-kind and 
the modified equation is very good away from the Dirichlet frequencies, and the 
performance of the latter much better in their vicinity; (iv) small discrepancies 
between the second-kind and the modified equations are observed only where the 
evaluated quantity is small in value, their agreement being very satisfactory when 
this value is large. Therefore, the performance of the modified equation is very 
satisfactory away from the Dirichlet frequencies, indicating that its poorer 
conditioning than the Green equation there (see figure 5 )  does not translate into 
appreciable errors. 

The determination of /Iopt for the specific geometry being studied requires the 
determination of the first Dirichlet frequency, followed by the maximization of the 
A-parameter by varying /I. In  practice, this process may be responsible for a 
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substantial computational overhead. For all the bodies studied, the optimal value of 
p is less than 0.2. Furthermore, it may be seen from figures 3 and 4 that the decay 
of h for values of p greater than is gradual. Therefore, selecting a value for p in 
(4.1) that would be an upper bound of the optimal values for a range of bodies of 
practical interest may not substantially degrade the quality of the predicted 
hydrodynamic forces. The value p = 0.2 was selected and has been used in figure 15 
for the evaluation of the heave added mass of the sphere and the sway added mass 
for the cylinder, generating good results over a wide frequency range. 

The convergence of the solution of the modified integral equation has been tested 
for three different values of p:  0, 0.2 and OC) . Here, we used flat panels and piecewise- 
constant values for the potential on each panel. As an example, the added-mass and 
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damping coefficient of a sphere are computed in heave and surge for three 
discretizations (64, 256 and 1024 panels) and compared to the highly accurate results 
of Hulme (1983) in figures 16-19. From these figures we observe that the first-kind 
equation does converge to the correct solution even though the convergence rate is 
much slower than that of the second kind. We can attribute the slower convergence 
of the first-kind equation to two sources: its poorer conditioning, and the wider 
bandwidth of the Neumann irregular frequency compared to  that of the Dirichlet 
irregular frequency. The first source influences the entire frequency range while the 
second source influences the convergence only in the vicinity of the Neumann 
frequencies. The slower convergence of the first-kind equation is strongly influenced 
by the second source as is illustrated in the figures 16, 18 and 19 where the solution 
converges fairly fast except near the Neumann frequencies (the zero frequency is the 
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first Neumann frequency for the heave mode). Finally, the convergence of the 
modified integral equation for p = 0.2 is a little slower than those of second-kind but 
much faster than that of the first-kind throughout the frequency range computed. 
From above, we may conclude that the solution of the modified integral equation 
converges to the correct solution with convergence rate which depends on the value 
of j3, and that the modified integral equation with the optimum /3 shows good 
convergence which is confirmed by the very good agreement of the computed 
hydrodynamic coefficient with the result of Hulme (1983). 

Relative to the Green equation (p = 0), the additional computational effort for the 
set-up and solution of (4.1) requires the evaluation of the influence coefficients which 
involve the double normal derivative of the Green function. The corresponding 
influence coefficients in the right-hand side involve single derivatives of G which are 
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evaluated for the set-up of the Green equation. In  deep water, the second spatial 
derivatives of G are related to its single derivatives and values by simple recurrence 
relations (Newman 1985) which require a few floating-point operations for their 
implementation. I n  finite water depth such recurrence relations are not known. It is, 
however, possible to develop algorithms for the evaluation of the Green function that 
may not require a substantial effort for the evaluation of the double derivatives 
relative to that required for their single derivatives and values. The solution of the 
linear system requires the same effort as for the Green equation, since the total 
number of panels is the same. In  deep water, it has been our experience for the sphere 
and the cylinder that the increase in the computational effort relative to the solution 
of the Green equation is about 20%. If the recommended value /3 = 0.2 for the 
coupling does not perform well for a particular geometry a new optimal value of /3 
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must be determined. This is accomplished by estimating the position of the irregular 
frequency followed by the determination of the minimum condition number over a 
range of values of /3. This search would in principle involve a substantial increase in 
the computational effort relative to  cases where the value of /3 is set a priori. 

The effects and importance of irregular frequency on multi-component structures 
and in particular on Tension Leg Platforms are further discussed by Korsmeyer et al. 
(1988). A more extensive presentation and additional results from the present 
method can be found in Lee (1988). 

5.  Conclusions 
A modified integral equation has been studied for the removal of all the irregular 

frequencies from boundary-integral equations arising in three-dimensional wave- 
body interactions. It has been obtained by the linear combination of the Green 
equation and its normal derivative relative to the field point, multiplying the latter by 
a complex coupling constant. The unbounded operator resulting from taking the 
normal derivative of the Green equation has not been regularized as has been 
suggested in the acoustics literature. Instead it has been directly discretized, using 
a panel code which employs plane quadrilateral panels to  approximate the body 
boundary, a piecewise-constant variation of the velocity potential and point 
collocation at the panel centroids. 

The effectiveness of the method depends on the proper selection of the coupling 
constant. It was numerically shown by minimizing the condition number of the 
modified equation a t  the first irregular frequency of the Green equation, that an 
optimal phase, equal to 90", and modulus exist. The value of the optimal modulus 
was found to depend on the shape of the body geometry, but a value of 0.2 was found 
to generate satisfactory results for the bodies tested. The implementation of the 
method does not entail a substantial increase in computational effort relative to the 
solution of the Green equation since the number of panels is the same, and in deep 
water the double spatial derivatives of the Green function can be expressed in terms 
of its first spatial derivatives and values by simple recurrence relations. The 
performance of the method has been demonstrated by evaluating the added-mass 
and damping coefficients and exciting force on a sphere and a truncated vertical 
cylinder. 

Financial support for this study was provided by A. S. Veritec, and by the Office 
of Naval Research (Contract NO0 14-8222-K-0 198). 
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